Skip navigation
Please use this identifier to cite or link to this item: http://192.168.1.231:8080/dulieusoDIGITAL_123456789/5895
Title: String distance for automatic image classification
Authors: Ducottet Christophe
Issue Date: 2020
Publisher: Đại học Quốc gia Hà Nội
Abstract: The Bag-of-visual Words model has recently become the most popular representation to depict image content. It has proven to be quite effective for many multimedia and vision applications, especially for object recognition and scene classification or automatic image annotation. This model however ignores the spatial layout of features within images, which is yet discriminative for category classification. In this paper, we present a novel approach based on string matching to take into account geometric correspondences between images and facilitate category recognition. First, we propose to represent images as strings of histogram second, we introduce a new string distance in the context of image comparison. This distance automatically identifies local alignments between sub image regions and allows merging groups of similar sub-regions. Experiments on several dataset such as Scene-15, Caltech-101 and Pascal 2007 show that the proposed approach outperforms the classical BOW method and is competitive with state-of-the art techniques for image classification.
URI: http://192.168.1.231:8080/dulieusoDIGITAL_123456789/5895
Appears in Collections:Các chuyên ngành khác

Files in This Item:
File Description SizeFormat 
ijcc2015_thinh.pdf1.32 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.