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Abstract 

Genetic algorithms are inspirvd by Darwin’s the 

survival o f the fittest theoly. This paper disctisses a genetic 

algorithm that can automatically generate test cases to test 

a selected path. This algorithm takes a selected path as a 

target and executes sequences of operators iteratively f o r  

test cases to evolve. The evolved test case can lead the 

program execution to achieve the target path. .4 j tness  

function namedSIMIMITY is dejned to determine which 

test cases should survive t f the jnal  test case has not been 

found. 

Keywords: Path testing, Test Cases Generation, Genetic 

Algorithms. 

1. Introduction 

The basic concepts of genetic algorithms were 

developed by Holland [ l ,  21. GAS include a class of 

adaptive searching techniques which are suitable for 

searching a discontinuous space. 

Genetic algorithms have been used to find 

automatically a program’s longest or shortest execution 

times. In the paper about testing real-time systems using 

genetic algorithms [8], J. Wegener, et. al. investigated the 

effectiveness of GAS to validate the temporal correctness 

of real-time systems by establishing the longest ‘and the 

shortest execution times. The authors declared that an 

appropriate fitness function for the genetic algorithms is 

found, and the fitness function is to measure the execution 

time in processor cycles. Their experiments using GAS on 

a number of programs have successhlly identified new 

longer and shorter execution times than those had been 

found using random testing or systematic testing. 

Genetic algorithms have also been used to search 

program domains for suitable test cases to satisfy the 

all-branch testing [3,4,5]. In their papers about automatic 

structural testing using genetic algorithms, B. F. Jones, et. 

al. [3, 51 showed that appropriate fitness functions are 

derived automatically for each branch predicate. All 

branches were covered with two orders of magnitude fewer 

test cases than random testing. 

In this paper, we developed a new metric (which is a 

fitness function) to determine the distance between the 

exercised path and the target path. The genetic algorithm 

with the metric is used to generate test cases for executing 

the target path . 

A genetic algorithm to find a test case which generates a 

given target path is depicted below: 

Initialke red cases from the domain of the program to be tested at 

randon,; 

Do 

feed theprogram with the test cases; 
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if any of the test case has reachedto the targetpath; 

output the successful message; 

exit, 

endy 

Determine which test case shouldsurvive with finess function; 

Reproduce the survivors; 

Select parents randomly from the survivors for crossover; 

Select the aossover sites of theparents; 

Produce the next new generation of test cases; 

Mutate the new generation of test cases according to the mutation 

probability; 

if iteration limit erceekd 

output a failure message 

erit 

endiy 

loop 

The first generation of test cases is generated at random. 

Then, the generated cases are fed to the program for 

execution. One test case will be exercised in one and only 

one correlated path. The survivors of test cases to the next 

generation are chosen according to the fitness function, 

which is a measurement function used to calculate the 

distances between the executed paths and the target path. 

Such distances are used to determine which test cases 

should survive. After all test cases in the present generation 

are fed, the new generation of test cases is generated by the 

operators of reproduction; cmssover and mutation. The 

system will automatically generate the next generation of 

test cases until one of the test cases covers the target path. 

Program inputs may be of different types and of 

complicated data structure, however these inputs can be 

treated as a single, concatenated bit string denoted as {b,, 

b2, ..., bn]. 

2 Development of the Fitness Function 

In branch testing, Hamming Distance has been used to 

measure the difference between the covered branches and 

the selected branches as the fitness [4]. This distance 

metric can only be used to measure the distance of two 

objects in which they have no specific sequences. For the 

tested elements in all-nodes or all-branches testing 

criterion, no tested sequence is needed. However for path 

testing, two different paths may contain the same branches 

but in different sequences. The simple Hamming Distance 

is not longer suitable. 

We extend the Hamming Distance from the first order to 

the n-th order ( n > l )  to measure the distance between two 

paths. Such extension is hereby named as Extended 

Hamming Distance (EHD). 

Hamming Distance is derived from the symmetric 

dflerence in set theory. The symmetric diffeewnce of the set 

a and the set p (denoted as a Op) is a set containing the 

elements either in a or p but not in both. In other words, 

a@’ equals to (aup)- (cmp).  In this paper, the cardinality 

of the synnietric dgference is defined as the distance 

between a and p: D,.p=la 8 /3 I. The notation, la 8 p 1, 
denotes the cardinality of a 0 p. 
The distance D,. p is normalized to become a real number: 

where N, - p represents the nomialized distance between 

sets a and p, and 0 I N,. p 5 1, because D,. p = I a 8 I = 

I auPI-1 a n p  I S  IauPI. 
Replace D, - p with la U p I - la n p I to derive 

- lauPI-lanPI=l IanPl 
lau’l IauPI Na-p - 

where Ma+ = (1 - the normalized distance between a and 

p). The function M a  - p is named as SIMZNMITI: and is 
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used to measure the similarity between (x and p. 
In the following section, M,p is used to measure the 

similarity between two paths in a program control-flow 

diagram. 

I f  P is a control-flow diagram of a given program and Q 

is the set of all complete paths within P, then, 

Q = @athi lpathi is a complete path within P} 
= {pathl,path2, -,path,), 

where z = the number of complete paths in P, 

path, = the i-th complete path in P, 1 I i 5 z. 

Let S': =(g I g is a branch ofpathI) ,  

S;' ={ h I h is an ordered pair of cascaded branches of 

path1 ;, , . . .  
Sy ={ k I k is an ordered n tup le  of  cascaded branches 

ofpath,, n SI S: I ), 
. . .  

Si ={ I' I I' is an ordered t-tuple of cascaded branches of 

path,, t 51 Si 1 and 1< q< z}, 

. . .  
The first order ci'istance between path, and pathj is 

expressed as, D,'- =I S,' 0 S: I .  The normalized first order 

distance between pathi and pathj is expressed as, 

I = D,'-J . The first order sindarity betweenpath, 
I$us: I 

and pathj is defied as, M f- = 1 - Nf- J .  

The second order distance between path, and pathj is 

expressed as, DI'-J =I 5';' 0 5'; I . The normalized second 

order distance between path, and pathj is expressed as, 

AI2 . = DI'-J . The second order siniilaril), between 

path, andpathj is defined as, A4:- = 1 - NI'- J .  

IS;'US;'l 

The in-th (ni=l..n) order distance between path, and 

pathj is expressed as, DZJ =I sy 0 Sy I .The normalized 

?ti-th order distance between pathi and pathj is expressed 

n m  
1-J  . The vi-th order siniilaril), between 

U 

as, N I " _ J  = 1s; I 

path, and path, is defined as, M E J  =1- N Z ,  The 

notation DITJ is the ?ti-th order EHD between path, and 

path, The notation NIYJ is the tn-th order Normalized 

Extended Hamming Distance (NEHD) between path, and 

path, The notation named as the tn-th order 

SlhflL4RITY between path, and path, where 1 5 in 5 n 

Note thatiZf,~, 9 (or N Z J  =1) if SIm nS," = 4 It means 

that path, and path, have no common m-tuple cascaded 

breaches Larger V:-J means greater dflerence between 

path, and path, Contrarily, larger means greater 

similaril), between path, and path, When pathJ and path, 

have no common branch, NEHD should take the form of 

M ?-, 9, 0 ,  I\!:-~ =O),  which is resulted from a worst 

test case When pathJ and path, are identical, NEHD 

should t&e the form of =O, IV;'-~ =O, *, lVCJ =O> 

from a perfect test case that force the program to execute 

along the target path. Therefore, if NEHD is not in the 

fitness function SIibfLARITY between pathj and path, is 

M:-J x cv, + ' + x w,. 
CPs are the weighing factor of fitness and Wl < JV2 < W3 

< < Ww 11 = 1 $ I ifpath, is defined as the target path. n 

= I S j  I if pathj is otheiwise. Since, if the target path is 

constructed by n branched, the values of h.f ~ 

should be zeros and are insignificant in similaril), 

~ 
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comparison. 

SlMIL4RITY,y determines the fitness between current 

executed pathj and the target pathi. The greater 

SlhfILARITY,, leads to the better fitness. The higher order 

similarity is more significant than its lower order 

counterpart. The highest-ordered similarity between pathi 

andpathi (Ad,", ) is therefore the most significant one. The 

semantics of the tested program has much effect on the 

values of CJPs. Determining the values of JVs is quite 

difficult and is usually done via experience. CVk+l= y* JVk 

means the (k+l)th order similarity is y times more 

significant than that of the kth order. 

Let the least significant weight ( W l )  be 1 .  In experience, 

the CPs for pathi may be assigned as: 

JVl =1, 

W2= JV1 x I S,' I 
CV,= r v 2  x I S," I 

JVx = CVm,,x I s l ' I - I  I 
. . .  

The distance between pathi (the target path) andpathi is 

larger than the distance between pathi and pathk if 

SIMILARITY,., > SIMILARITY,,. Therefore, pathk is closer 

to the target than pathj is. The SIMILARITY function can 

help the algorithm to search the program domain and to 

fmd fitter test cases. Even when there are loops in the target 

path, the function can help the algorithm to lead the 

execution to flow along the loops of the target path. 

3. Results 

three input lengths. The program's control flow diagram is 

shown in Figure 2 .  In this program, a set of labels is 

implemented to indicate when the path is executed. 

Therefore, executing the implemented program under test 

with each test case can produce a string of labels for the: 

fitness function. 

(2) Taiget Path selection: 

The path "abc" in Figure 2 is the most difficult path to 

be covered in random testing. The program in Figure 1 has 

three integers as input parameters. While the three 

parameters are positive and equal, the path "abc" can be 

covered. The covered probability of this path is 

Z3O(=l *2-'5*2-15 for each positive integer is 15 bits). To 

show the ability of searching test cases for specific paths 

by using genetic algorithm is much greater than by using 

r'andom testing, the path 'abc" is selected as the target path 

in this example. 
X include <string.h-, 
char path[756]; 
int TriangleA(1insigned int a, unsigned int b, unsignet int c) 
{ int Triangle = 0; /*bl* 

if(( a + b > c ) && ( b + c > a )  && ( c  + a > b ) )  /*bl* 
{ strcat(path,"a"); /* instrumentation */ 

if(( a != b) && ( b != c && ( c != a )) /*b2* 
{ strcat(path,"e"); /* instrumentation */ 

else 
{ strcat(path,"b"); /* instrumentation *: 

if(((a == b) && (b != c))ll ((b == c) && (c != a))ll 
/*W*l 

{ strcat(path,"f'), /* instrumentation * i  
/* Isosceles b5*/ 

else 
{ strcat(path,"c"), /* instrumentation *: 

Triangle = 3;  } } /*Equilateral 6*/' 

Triangle = 1 ; } /*Scalene b3*/ 

((c == a) && (a != b))) 

Triangle = 3; } 

1 
else 
{ strcat(path,"d")? } /* instrumentation ( not a triangle) * 
return ( Triangle ), /*bl*i 

1 
In the general path testing experiment, the basic steps 

used are given below. 

( I )  Contiulflow graph construction: 

The tested program (Figure 1 Triangle Classifier) 

determines what kind of triangle can be formed by any 

Figure 1 ,  Triangle Classifier [6,7].  

The comments (/*b,*/ */*b7*/) denote the program 

blocks 1 to 7 respectively. In Figure 2, the nodes 1 to 7 

indicate the control flow locations of these blocks. 

(3) Test case generation and execution: 
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According to the genetic algorithms, an experimental 

tool for generating test cases automatically in order to test 

a specific path is developed. The tool divides the input 

string of 48-bit length into three genes using the 

conjunctions between two integers as the fixed crossover 

site. Pairs of test cases were combined using two-point 

crossover algorithm. The crossover rate is set to 0.9. 

Traditionally, the mutation probability is set to the 

reciprocal of the length of the bit string [4]. Hence, the 

mutation probability is set to 1/48. 

1 
2 
3 
4 

9 I 

33 966 1 0 1000 
8 910 82 0 1000 
4 870 126 0 1000 
1 603 399 0 1030 

Figure 2. The control flow diagram of the program shown 

in Figure 1. 

In this experiment, the first generation of test cases was 

chosen from the tested program’s domain randomly. Then 

the tested program was executed with these test cases. The 

executed results are evaluated by fitness function to 

determine which test cases should survive to generate the 

next generation. Again, new generations of test cases are 

generated by reproduction, cmssover and mutation. The 

average fitness of each generation is steadily improved 

until the target path is achieved. In the initial generations, 

the execution of generated test cases were mostly group in 

the path <d>. In the subsequent generations, the execution 

of generated test cases gathered in the path < a b e .  

According to the experiments, about 52.5 percent and 47.5 

percent of the first generation test cases, which were 

5 
6 
7 

generated at random, executed the path <d> and the path 

<abe> respectively, and none of the test cases executed the 

other paths. After the fifth generation, all the evolution of 

the test cases left the path <d> and mostly gathered in the 

path <ab-. Afterward, the execution of generated test 

cases approached the path <ab@ gradually. Finally, at least 

a test case reached the path <abc> and succeeded in 

generating the test case. After one hundred experiments, 

the results on Table 1 show that the target path was 

obtained within 10100 test cases (i.e. I00 test cases + 10 

generations x IO00 test cases in each generation) by 

average. While, based on the theory of probability, it will 

take random testing 230 tests to reach the target. 

Table 1 shows the evolution of test cases from the first 

generation to the 1 1th generation. These values were 

averaged from 100 experiments. Before the fifth 

generation, the algorithm decreased the number of test 

cases on the path <d> and increased the number of test 

cases on the path <a@. After the fifth generation, the 

number of test cases on the path < a 0  was decreased and 

the number of test cases on the path <abf> increased 

speedily. 

0 314 686 0 1030 
0 214 786 0 1030 
0 175 825 0 1030 

(Generations ImPathI. PathlA Pathlb$ath lThe No. of tesd 

I8 10 1102 1898 10 I1000 I 

Table 1 .  The Average Number of Test Cases on the Paths of 

Figure 1 in Each Generation 

(4) Test trsult evaluation: 

This step is to execute the selected path with the test 
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cases found in step (3) and to determine whether the 

outputs are correct or not. 

Since there is no guarantee that the algorithm can find 

the target within definite number of runs, the execution of 

the algorithm was allowed to continue for 450 generations 

before it was stopped. Fortunately, the evolutions of the 

test cases to execute the target path were less than 18 

generations in our experiments. We have also applied 100 

test cases and 10000 test cases in each generation in the 

same experiment. It is found that the best result is to apply 

1000 test cases in one generation. In summary, the number 

of individuals of one generation should be large enough to 

maintain diversity, yet small enough to avoid an excessive 

number of tests. 

4. Conclusion 

In this paper, the genetic algorithms are used to generate 

test cases automatically for path testing. The greatest merit 

of using the genetic algorithm in program testing is its 

simplicity. The quality of test cases produced by genetic 

algorithms is higher than the quality of test cases produced 

by random way because the algorithm can direct the 

generation of test cases to the desirable range fast. When 

Compare to random testing, use of Extended Hamming 

Distance to derive SIhfIL4RITY (a fitness function) is a 

very useful approach for path testing. This paper shows 

that genetic algorithms are useful in reducing the time 

required for lengthy testing meaningfully by generating 

test cases for path testing in an automatic way. 
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