
Using Genetic Algorithms for Test Case Generation in Path Testing

Jin-Cherng Lin and Pu-Lin Yeh
Dept. of Computer Science and Engineering, Tatung University

Taipei 1045 1, Taiwan
Email: plveh@,msl .tisnet.net.tw

Abstract

Genetic algorithms are inspirvd by Darwin’s the

survival o f the fittest theoly. This paper disctisses a genetic

algorithm that can automatically generate test cases to test

a selected path. This algorithm takes a selected path as a

target and executes sequences of operators iteratively f o r

test cases to evolve. The evolved test case can lead the

program execution to achieve the target path. .4 j tness

function namedSIMIMITY is dejned to determine which

test cases should survive t f the jnal test case has not been

found.

Keywords: Path testing, Test Cases Generation, Genetic

Algorithms.

1. Introduction

The basic concepts of genetic algorithms were

developed by Holland [l , 21. GAS include a class of

adaptive searching techniques which are suitable for

searching a discontinuous space.

Genetic algorithms have been used to find

automatically a program’s longest or shortest execution

times. In the paper about testing real-time systems using

genetic algorithms [8], J. Wegener, et. al. investigated the

effectiveness of GAS to validate the temporal correctness

of real-time systems by establishing the longest ‘and the

shortest execution times. The authors declared that an

appropriate fitness function for the genetic algorithms is

found, and the fitness function is to measure the execution

time in processor cycles. Their experiments using GAS on

a number of programs have successhlly identified new

longer and shorter execution times than those had been

found using random testing or systematic testing.

Genetic algorithms have also been used to search

program domains for suitable test cases to satisfy the

all-branch testing [3,4,5]. In their papers about automatic

structural testing using genetic algorithms, B. F. Jones, et.

al. [3, 51 showed that appropriate fitness functions are

derived automatically for each branch predicate. All

branches were covered with two orders of magnitude fewer

test cases than random testing.

In this paper, we developed a new metric (which is a

fitness function) to determine the distance between the

exercised path and the target path. The genetic algorithm

with the metric is used to generate test cases for executing

the target path .

A genetic algorithm to find a test case which generates a

given target path is depicted below:

Initialke red cases from the domain of the program to be tested at

randon,;

Do

feed theprogram with the test cases;

1081-7735100 $10.00 0 2000 IEEE
241

if any of the test case has reachedto the targetpath;

output the successful message;

exit,

endy

Determine which test case shouldsurvive with finess function;

Reproduce the survivors;

Select parents randomly from the survivors for crossover;

Select the aossover sites of theparents;

Produce the next new generation of test cases;

Mutate the new generation of test cases according to the mutation

probability;

if iteration limit erceekd

output a failure message

erit

endiy

loop

The first generation of test cases is generated at random.

Then, the generated cases are fed to the program for

execution. One test case will be exercised in one and only

one correlated path. The survivors of test cases to the next

generation are chosen according to the fitness function,

which is a measurement function used to calculate the

distances between the executed paths and the target path.

Such distances are used to determine which test cases

should survive. After all test cases in the present generation

are fed, the new generation of test cases is generated by the

operators of reproduction; cmssover and mutation. The

system will automatically generate the next generation of

test cases until one of the test cases covers the target path.

Program inputs may be of different types and of

complicated data structure, however these inputs can be

treated as a single, concatenated bit string denoted as {b,,

b2, ..., bn].

2 Development of the Fitness Function

In branch testing, Hamming Distance has been used to

measure the difference between the covered branches and

the selected branches as the fitness [4]. This distance

metric can only be used to measure the distance of two

objects in which they have no specific sequences. For the

tested elements in all-nodes or all-branches testing

criterion, no tested sequence is needed. However for path

testing, two different paths may contain the same branches

but in different sequences. The simple Hamming Distance

is not longer suitable.

We extend the Hamming Distance from the first order to

the n-th order (n > l) to measure the distance between two

paths. Such extension is hereby named as Extended

Hamming Distance (EHD).

Hamming Distance is derived from the symmetric

dflerence in set theory. The symmetric diffeewnce of the set

a and the set p (denoted as a Op) is a set containing the

elements either in a or p but not in both. In other words,

a@’ equals to (aup)- (cmp). In this paper, the cardinality

of the synnietric dgference is defined as the distance

between a and p: D,.p=la 8 /3 I. The notation, la 8 p 1,
denotes the cardinality of a 0 p.
The distance D,. p is normalized to become a real number:

where N, - p represents the nomialized distance between

sets a and p, and 0 I N,. p 5 1, because D,. p = I a 8 I =

I auPI-1 a n p I S IauPI.
Replace D, - p with la U p I - la n p I to derive

- lauPI-lanPI=l IanPl
lau’l IauPI Na-p -

where Ma+ = (1 - the normalized distance between a and

p). The function M a - p is named as SIMZNMITI: and is

242

used to measure the similarity between (x and p.
In the following section, M,p is used to measure the

similarity between two paths in a program control-flow

diagram.

I f P is a control-flow diagram of a given program and Q

is the set of all complete paths within P, then,

Q = @athi lpathi is a complete path within P}
= {pathl,path2, -,path,),

where z = the number of complete paths in P,

path, = the i-th complete path in P, 1 I i 5 z.

Let S': =(g I g is a branch ofpathI) ,

S;' ={ h I h is an ordered pair of cascaded branches of

path1 ;, , . . .
Sy ={ k I k is an ordered n tup le of cascaded branches

ofpath,, n SI S: I),
. . .

Si ={ I' I I' is an ordered t-tuple of cascaded branches of

path,, t 51 Si 1 and 1< q< z},

. . .
The first order ci'istance between path, and pathj is

expressed as, D,'- =I S,' 0 S: I . The normalized first order

distance between pathi and pathj is expressed as,

I = D,'-J . The first order sindarity betweenpath,
I$us: I

and pathj is defied as, M f- = 1 - Nf- J .

The second order distance between path, and pathj is

expressed as, DI'-J =I 5';' 0 5'; I . The normalized second

order distance between path, and pathj is expressed as,

AI2 . = DI'-J . The second order siniilaril), between

path, andpathj is defined as, A4:- = 1 - NI'- J .

IS;'US;'l

The in-th (ni=l..n) order distance between path, and

pathj is expressed as, DZJ =I sy 0 Sy I .The normalized

?ti-th order distance between pathi and pathj is expressed

n m
1-J . The vi-th order siniilaril), between

U

as, N I " _ J = 1s; I

path, and path, is defined as, M E J =1- N Z , The

notation DITJ is the ?ti-th order EHD between path, and

path, The notation NIYJ is the tn-th order Normalized

Extended Hamming Distance (NEHD) between path, and

path, The notation named as the tn-th order

SlhflL4RITY between path, and path, where 1 5 in 5 n

Note thatiZf,~, 9 (or N Z J =1) if SIm nS," = 4 It means

that path, and path, have no common m-tuple cascaded

breaches Larger V:-J means greater dflerence between

path, and path, Contrarily, larger means greater

similaril), between path, and path, When pathJ and path,

have no common branch, NEHD should take the form of

M ?-, 9, 0 , I\!:-~ =O), which is resulted from a worst

test case When pathJ and path, are identical, NEHD

should t&e the form of =O, IV;'-~ =O, *, lVCJ =O>

from a perfect test case that force the program to execute

along the target path. Therefore, if NEHD is not in the

fitness function SIibfLARITY between pathj and path, is

M:-J x cv, + ' + x w,.
CPs are the weighing factor of fitness and Wl < JV2 < W3

< < Ww 11 = 1 $ I ifpath, is defined as the target path. n

= I S j I if pathj is otheiwise. Since, if the target path is

constructed by n branched, the values of h.f ~

should be zeros and are insignificant in similaril),

~

243

comparison.

SlMIL4RITY,y determines the fitness between current

executed pathj and the target pathi. The greater

SlhfILARITY,, leads to the better fitness. The higher order

similarity is more significant than its lower order

counterpart. The highest-ordered similarity between pathi

andpathi (Ad,",) is therefore the most significant one. The

semantics of the tested program has much effect on the

values of CJPs. Determining the values of JVs is quite

difficult and is usually done via experience. CVk+l= y* JVk

means the (k+l)th order similarity is y times more

significant than that of the kth order.

Let the least significant weight (W l) be 1 . In experience,

the CPs for pathi may be assigned as:

JVl =1,

W2= JV1 x I S,' I
CV,= r v 2 x I S," I

JVx = CVm,,x I s l ' I - I I
. . .

The distance between pathi (the target path) andpathi is

larger than the distance between pathi and pathk if

SIMILARITY,., > SIMILARITY,,. Therefore, pathk is closer

to the target than pathj is. The SIMILARITY function can

help the algorithm to search the program domain and to

fmd fitter test cases. Even when there are loops in the target

path, the function can help the algorithm to lead the

execution to flow along the loops of the target path.

3. Results

three input lengths. The program's control flow diagram is

shown in Figure 2 . In this program, a set of labels is

implemented to indicate when the path is executed.

Therefore, executing the implemented program under test

with each test case can produce a string of labels for the:

fitness function.

(2) Taiget Path selection:

The path "abc" in Figure 2 is the most difficult path to

be covered in random testing. The program in Figure 1 has

three integers as input parameters. While the three

parameters are positive and equal, the path "abc" can be

covered. The covered probability of this path is

Z3O(=l *2-'5*2-15 for each positive integer is 15 bits). To

show the ability of searching test cases for specific paths

by using genetic algorithm is much greater than by using

r'andom testing, the path 'abc" is selected as the target path

in this example.
X include <string.h-,
char path[756];
int TriangleA(1insigned int a, unsigned int b, unsignet int c)
{ int Triangle = 0; /*bl*

if((a + b > c) && (b + c > a) && (c + a > b)) /*bl*
{ strcat(path,"a"); /* instrumentation */

if((a != b) && (b != c && (c != a)) /*b2*
{ strcat(path,"e"); /* instrumentation */

else
{ strcat(path,"b"); /* instrumentation *:

if(((a == b) && (b != c))ll ((b == c) && (c != a))ll
/*W*l

{ strcat(path,"f'), /* instrumentation * i
/* Isosceles b5*/

else
{ strcat(path,"c"), /* instrumentation *:

Triangle = 3; } } /*Equilateral 6*/'

Triangle = 1 ; } /*Scalene b3*/

((c == a) && (a != b)))

Triangle = 3; }

1
else
{ strcat(path,"d")? } /* instrumentation (not a triangle) *
return (Triangle), /*bl*i

1
In the general path testing experiment, the basic steps

used are given below.

(I) Contiulflow graph construction:

The tested program (Figure 1 Triangle Classifier)

determines what kind of triangle can be formed by any

Figure 1 , Triangle Classifier [6,7].

The comments (/*b,*/ */*b7*/) denote the program

blocks 1 to 7 respectively. In Figure 2, the nodes 1 to 7

indicate the control flow locations of these blocks.

(3) Test case generation and execution:

244

According to the genetic algorithms, an experimental

tool for generating test cases automatically in order to test

a specific path is developed. The tool divides the input

string of 48-bit length into three genes using the

conjunctions between two integers as the fixed crossover

site. Pairs of test cases were combined using two-point

crossover algorithm. The crossover rate is set to 0.9.

Traditionally, the mutation probability is set to the

reciprocal of the length of the bit string [4]. Hence, the

mutation probability is set to 1/48.

1
2
3
4

9 I

33 966 1 0 1000
8 910 82 0 1000
4 870 126 0 1000
1 603 399 0 1030

Figure 2. The control flow diagram of the program shown

in Figure 1.

In this experiment, the first generation of test cases was

chosen from the tested program’s domain randomly. Then

the tested program was executed with these test cases. The

executed results are evaluated by fitness function to

determine which test cases should survive to generate the

next generation. Again, new generations of test cases are

generated by reproduction, cmssover and mutation. The

average fitness of each generation is steadily improved

until the target path is achieved. In the initial generations,

the execution of generated test cases were mostly group in

the path <d>. In the subsequent generations, the execution

of generated test cases gathered in the path < a b e .

According to the experiments, about 52.5 percent and 47.5

percent of the first generation test cases, which were

5
6
7

generated at random, executed the path <d> and the path

<abe> respectively, and none of the test cases executed the

other paths. After the fifth generation, all the evolution of

the test cases left the path <d> and mostly gathered in the

path <ab-. Afterward, the execution of generated test

cases approached the path <ab@ gradually. Finally, at least

a test case reached the path <abc> and succeeded in

generating the test case. After one hundred experiments,

the results on Table 1 show that the target path was

obtained within 10100 test cases (i.e. I00 test cases + 10

generations x IO00 test cases in each generation) by

average. While, based on the theory of probability, it will

take random testing 230 tests to reach the target.

Table 1 shows the evolution of test cases from the first

generation to the 1 1th generation. These values were

averaged from 100 experiments. Before the fifth

generation, the algorithm decreased the number of test

cases on the path <d> and increased the number of test

cases on the path <a@. After the fifth generation, the

number of test cases on the path < a 0 was decreased and

the number of test cases on the path <abf> increased

speedily.

0 314 686 0 1030
0 214 786 0 1030
0 175 825 0 1030

(Generations ImPathI. PathlA Pathlb$ath lThe No. of tesd

I8 10 1102 1898 10 I1000 I

Table 1 . The Average Number of Test Cases on the Paths of

Figure 1 in Each Generation

(4) Test trsult evaluation:

This step is to execute the selected path with the test

245

cases found in step (3) and to determine whether the

outputs are correct or not.

Since there is no guarantee that the algorithm can find

the target within definite number of runs, the execution of

the algorithm was allowed to continue for 450 generations

before it was stopped. Fortunately, the evolutions of the

test cases to execute the target path were less than 18

generations in our experiments. We have also applied 100

test cases and 10000 test cases in each generation in the

same experiment. It is found that the best result is to apply

1000 test cases in one generation. In summary, the number

of individuals of one generation should be large enough to

maintain diversity, yet small enough to avoid an excessive

number of tests.

4. Conclusion

In this paper, the genetic algorithms are used to generate

test cases automatically for path testing. The greatest merit

of using the genetic algorithm in program testing is its

simplicity. The quality of test cases produced by genetic

algorithms is higher than the quality of test cases produced

by random way because the algorithm can direct the

generation of test cases to the desirable range fast. When

Compare to random testing, use of Extended Hamming

Distance to derive SIhfIL4RITY (a fitness function) is a

very useful approach for path testing. This paper shows

that genetic algorithms are useful in reducing the time

required for lengthy testing meaningfully by generating

test cases for path testing in an automatic way.

5. Reference

[2] J. H. Holland “Adaptation in nature and artificial systems”

Addison-Wesley, 1975.

[3] B.F Jones, H.-H. Sthamer, X. Yang and D.E. Eyres, “The

automatic generation of software test data sets using adaptive

search techniques”, Third International Conference on Software

Quality Management”, Seville (1 999 , pp. 435-444 (BCSICMP).

[4] B. F. Jones, H-H. Sthamer and D. E. Eyes, “ Automatic

Structural Testing Using Genetic Algorithms”, Software

Engineering Journal, 1996,9, pp. 299-306.

[SI B. F. Jones, D. E. Eyres, H.-H Sthamer, “A strategy for using

genetic algorithms to automate branch and fault-based testing,”

The Computer Joumal, Vol. 41, 1998, pp.98-107

[6] P. N. Lee, “Correspondent Computing”, Proceeding of ACM

1988 Computer Science Conference, Atlanta Georgia, pp. 12-19,

1988.

[7] G. Myers, “The art of Software Testing”, Wiley, 1979.

[8] J. Wegener. H. Sthmer, B. F. Jone and D. E. Eyres, “Testint

Real-Time System Using Genetic Algorithms”. Software Quality

Joumal 6,1997, pp. 127-153.

[l] J. H. Holland, “Genetic algorithms and the optimal allocation

oftrials”SIAh4 J. Comput., pp. 89-104, 1973.

246

