
A tool for analysing Python programs based on
Chef

Supervisor: A.Prof. Truong Anh Hoang
Student: Nguyen Thanh Toan

University of Engineering and Technology, VNU

May 21, 2015

1 / 21



Table of Contents

I Background

I S2E framework and Chef recipe

I Analysing Chef tool

I A tool for generating unit test cases

I Conclusions and future work

2 / 21



Background

I Unit testing

I Symbolic execution

I Concolic testing

3 / 21



Unit testing

I Unit testing is a method that we check an unit or module of a
program.

I Users create input values, run them on the unit and then
compare result with their expected outcomes.

4 / 21



Unit testing
I Unit testing benefits to find problems early, to facilitate

changes, to simplify integration testing and to provide
documentation, software design.

import unittest

def average(x, y):

return (x + y)/2

class AverageTest(unittest.TestCase):

def test_1(self):

result = average(3, 5)

expected_result = 4

self.assertEqual(result, expected_result)

def test_2(self):

result = average(3, 4)

expected_result = 3

self.assertEqual(result, expected_result)

5 / 21



Symbolic execution

I Instead of using concrete values, symbolic execution utilizes
symbols to cover more paths in program.

I Existing symbolic execution engines: KLEE on LLVM, JPF on
Java, Jalangi on JavaScript.

x = input("Enter a number")

if x > 3:

print "x is greater than 3"

else:

print "x is equal or less than 3"

6 / 21



Concolic testing

I Combining concrete testing and symbolic execution

I Utilizing advantages and minimizing disadvantages of these
two techniques

def function(x, y):

z = 2*y

if x == 10000 :

if x < z:

assert(0) #error

7 / 21



S2E framework

I One problem of symbolic execution is that how programs
interact with their environment

I S2E creates a virtual machine and performs symbolic
execution inside it.

I S2E has been used for:
I Automated testing
I Reverse engineering
I Performance profiling

8 / 21



Chef recipe

I Chef proposes a recipe to adapt interpreted programs to run
on S2E framework.

I The problem between interpreted and low-level language is
statement coverage.

I The solution of Chef is Class Uniform Path Analysis

Figure: CUPA state partitioning

9 / 21



Installing Chef tool

I Chef installation involves three different documents that are
not unified.

I We combines them into one unified installation guide:
I Installing S2E framework
I Creating Chef virtual machine
I Setting up host and guest repositories
I Running symbolic execution on Python programs

I Users can follow this document guide to install and run Chef
straightforward.

10 / 21



Running Chef results

I We analyse the number of high-level and low-level test cases
and it is possible to complete after 6 hours running

I Chef engine power: 512 GB RAM

I Our engine power: 8GB RAM

Test HL test cases LL test cases Completed

ArgparseTest 64 303 yes
ConfigParserTest 65 4543 no
HTMLParserTest 476 5238 no
SimpleJSONTest 21 1907 no

XLRDTest 2492 2730 no
UnicodeCSVTest 164 208314 no

Table: Testing result of 6 Python tests

11 / 21



Analysing Chef results

I Chef advantages:
I Chef is capable of running symbolic execution directly on

interpreted programs such as Python, Lua.
I Chef can build symbolic execution engine for Python in 8 days

and Lua in 5 days.
I Chef symbolic execution engines are not weaker than manual

built ones.

I Chef limitations:
I Chef only experiments symbolic execution on getString

function.
I Chef is performed on powerful machine with 512 GB while it

usually gets stopped on personal computers.
I To build Chef symbolic execution engine, it needs to

understand S2E framework thoroughly.

12 / 21



Tool overview

I This tool generates large quantity of input values that are
hard for individuals to create themselves.

I It also completes about 80 per cent work of writing unit test
cases for developers.

I It utilizes the result of running 6 programs on Chef symbolic
execution engine.

13 / 21



Generating test case procedure

I Modifying the format of input programs

I Eliminating invalid input values

I Generating unit test cases

14 / 21



Modifying input programs

I The input programs are created to instrument to Chef
symbolic execution engine.

class HTMLParserTest(light.SymbolicTest):

def setUp(self):

self.HTMLParser =

importlib.import_module("HTMLParser")

def runTest(self):

parser = self.HTMLParser.HTMLParser()

parser.feed(self.getString("html", ’\x00’*15))

parser.close()

15 / 21



Modifying input programs

I They need to be transformed so that they can take concrete
values to run.

import HTMLParser

class HTMLParserTestFunction(unittest.TestCase):

parser = HTMLParser.HTMLParser()

parser.feed(input_string)

parser.close()

16 / 21



Eliminating invalid input values

I Input values that are not complete.

2740316685 0xb760b396 arg2_name.s#value=>"---"

arg1_name.s#value=>"-\x00-"

834885621 0xb760b396 arg1_name.s#value=>"---"

I Input values that are the same, especially the null string.

17 / 21



Generating unit test cases

import unittest

import unicodecsv

import cStringIO

class UnicodeCSVTestFunction(input_string):

f = cStringIO.StringIO(input_string)

r = self.unicodecsv.reader(f, encoding="utf-8")

for row in r

pass

f.close

class HTMLParserTest(unittest.TestCase):

def test_1(self):

result = UnicodeCSVTestFunction(",,\n,,")

self.assertEqual(result, expected_result)

18 / 21



Tool evaluation

I A large amount of input values are generated for unit testing.

I Our tool can generate hundreds to thousands test cases

I We complete about 80 per cent of writing unit test work

Test Generated test cases

ArgparseTest 293
ConfigParserTest 4540
HTMLParserTest 5236
SimpleJSONTest 1905

XLRDTest 2720
UnicodeCSVTest 208214

Table: Testing result of generating unit test cases

19 / 21



Conclusions

I We create a tool that generate a large number of input values
for Python programs

I We also analyse the Chef tool and it is possible to apply to
other interpreted languages

I We unify three different installation guide into one Chef
installation and running document

20 / 21



Future Work

I Automatically computing value of expected result variable
I Test cases can be runnable

I Applying Chef recipe to JavaScript
I Mastering S2E plug-in construction
I Setting up on of ECMASCript Engines as interpreter
I Comparing with existing work of Kudzu and Jalangi

21 / 21


