A tool for analysing Python programs based on
Chef

Supervisor: A.Prof. Truong Anh Hoang
Student: Nguyen Thanh Toan

University of Engineering and Technology, VNU

May 21, 2015

21



Table of Contents

v

Background

v

S2E framework and Chef recipe

v

Analysing Chef tool

v

A tool for generating unit test cases

Conclusions and future work

v

)

21



Background

> Unit testing
» Symbolic execution

» Concolic testing

21



Unit testing

» Unit testing is a method that we check an unit or module of a
program.

» Users create input values, run them on the unit and then
compare result with their expected outcomes.

21



Unit testing

> Unit testing benefits to find problems early, to facilitate
changes, to simplify integration testing and to provide
documentation, software design.

import unittest
def average(x, y):
return (x + y)/2

class AverageTest(unittest.TestCase):
def test_1(self):
result = average(3, 5)
expected_result = 4
self.assertEqual(result, expected_result)

def test_2(self):
result = average(3, 4)
expected_result = 3
self.assertEqual (result, expected_result)

5/21



Symbolic execution

» Instead of using concrete values, symbolic execution utilizes
symbols to cover more paths in program.

» Existing symbolic execution engines: KLEE on LLVM, JPF on
Java, Jalangi on JavaScript.

x = input("Enter a number")
if x > 3:

print "x is greater than 3"
else:

print "x is equal or less than 3"

6

21



Concolic testing

» Combining concrete testing and symbolic execution
» Utilizing advantages and minimizing disadvantages of these
two techniques

def function(x, y):
z = 2%y
if x == 10000 :
if x < z:
assert(0) #error

21



S2E framework

» One problem of symbolic execution is that how programs
interact with their environment

» S2E creates a virtual machine and performs symbolic
execution inside it.
» S2E has been used for:

» Automated testing
> Reverse engineering
» Performance profiling

21



Chef recipe

» Chef proposes a recipe to adapt interpreted programs to run
on S2E framework.

» The problem between interpreted and low-level language is
statement coverage.

> The solution of Chef is Class Uniform Path Analysis

s @ @ @ @ ®

Figure: CUPA state partitioning

21



Installing Chef tool

» Chef installation involves three different documents that are
not unified.

» We combines them into one unified installation guide:

Installing S2E framework

Creating Chef virtual machine

Setting up host and guest repositories

Running symbolic execution on Python programs

v

v vy

» Users can follow this document guide to install and run Chef
straightforward.

10/21



Running Chef results

» We analyse the number of high-level and low-level test cases
and it is possible to complete after 6 hours running

> Chef engine power: 512 GB RAM
» Our engine power: 8GB RAM

H Test HL test cases LL test cases Completed H
ArgparseTest 64 303 yes
ConfigParserTest 65 4543 no
HTMLParserTest 476 5238 no
SimpleJSONTest 21 1907 no
XLRDTest 2492 2730 no
UnicodeCSVTest 164 208314 no

Table: Testing result of 6 Python tests

11/21



Analysing Chef results

» Chef advantages:

» Chef is capable of running symbolic execution directly on
interpreted programs such as Python, Lua.

» Chef can build symbolic execution engine for Python in 8 days
and Lua in 5 days.

» Chef symbolic execution engines are not weaker than manual
built ones.

> Chef limitations:

» Chef only experiments symbolic execution on getString
function.

» Chef is performed on powerful machine with 512 GB while it
usually gets stopped on personal computers.

» To build Chef symbolic execution engine, it needs to
understand S2E framework thoroughly.

12 /21



Tool overview

» This tool generates large quantity of input values that are
hard for individuals to create themselves.

> It also completes about 80 per cent work of writing unit test
cases for developers.

> It utilizes the result of running 6 programs on Chef symbolic
execution engine.

13/21



Generating test case procedure

» Modifying the format of input programs
» Eliminating invalid input values

» Generating unit test cases

14 /21



Modifying input programs

» The input programs are created to instrument to Chef
symbolic execution engine.

class HTMLParserTest(light.SymbolicTest):
def setUp(self):
self .HTMLParser =
importlib.import_module ("HTMLParser")

def runTest(self):
parser = self.HTMLParser.HTMLParser ()
parser.feed(self.getString("html", ’\x00’%15))
parser.close()

15/21



Modifying input programs

» They need to be transformed so that they can take concrete
values to run.

import HTMLParser

class HTMLParserTestFunction(unittest.TestCase):
parser = HTMLParser.HTMLParser ()
parser.feed(input_string)
parser.close()

16

21



Eliminating invalid input values

> Input values that are not complete.

2740316685 0xb760b396 arg2_name.s#value=>"---"
argl_name. s#value=>"-\z00-"
834885621 0xb760b396 argl_name.s#value=>"---"

» Input values that are the same, especially the null string.

17/21



Generating unit test cases

import unittest
import unicodecsv
import cStringIl0

class UnicodeCSVTestFunction(input_string):
f = cStringl0.StringI0(input_string)
r = self.unicodecsv.reader(f, encoding="utf-8")
for row in r
pass
f.close

class HTMLParserTest(unittest.TestCase):
def test_1(self):
result = UnicodeCSVTestFunction(",,\n,,")
self.assertEqual(result, expected_result)

18/21



Tool evaluation

> A large amount of input values are generated for unit testing.
» Our tool can generate hundreds to thousands test cases

> We complete about 80 per cent of writing unit test work

H Test Generated test cases H
ArgparseTest 293
ConfigParserTest 4540
HTMLParserTest 5236
SimpleJSONTest 1905
XLRDTest 2720
UnicodeCSVTest 208214

Table: Testing result of generating unit test cases

19/21



Conclusions

» We create a tool that generate a large number of input values
for Python programs

» We also analyse the Chef tool and it is possible to apply to
other interpreted languages

» We unify three different installation guide into one Chef
installation and running document

20/21



Future Work

» Automatically computing value of expected_result variable
» Test cases can be runnable
» Applying Chef recipe to JavaScript

» Mastering S2E plug-in construction
» Setting up on of ECMASCript Engines as interpreter
» Comparing with existing work of Kudzu and Jalangi

21/21



